Classification of EEG Physiological Signal for the Detection of Epileptic Seizure by Using DWT Feature Extraction and Neural Network
نویسندگان
چکیده
EEG (Electroencephalogram) is a technique for identifying neurological disorders. There are various neurological disorders like Epilepsy, brain cancer, etc. Feature extraction and classification of electroencephalogram (EEGs) signals for (normal and epileptic) is a challenge for engineers and scientists. Various signal processing techniques have already been proposed for classification of non-linear and non stationary signals like EEG. In this work, neural network analysis (NNA) based classifier was employed to detect epileptic seizure activity from background electro encephalographs (EEGs). Two types of EEG signals (healthy subject with eye open condition, epileptic) were selected for the analysis. Signals were reprocessed, decomposed by using discrete wavelet transform DWT till 5th level of decomposition tree. Various features like mean. Standard deviation, median, entropy, kurtosis and skewness were computed and consequently used for classification of signals. The range of these features in non-epileptic and epileptic group of 80 subjects each from data set is analyzed for data available at the Department of Epileptology, University of Bonn, and the parameters with distinct non-overlapping zone are identified. The results show the promising classification accuracy of nearly 100% in detection of abnormal from normal EEG signals. The main purpose of this new approach is that the computation time of NNA classifier is less to provide better accuracy. This proposed classifier can be used to design expert system for epilepsy diagnosis purpose in various hospitals.
منابع مشابه
P81: Detection of Epileptic Seizures Using EEG Signal Processing
Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...
متن کاملPerformance Analysis of Epileptic Seizure Detection Using DWT & ICA with Neural Networks
The electroencephalogram (EEG) signal plays an important role in the detection of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a timeconsuming analysis of the entire length of the EEG data by an expert. The aim of this work is compare the automatic detection of EEG patterns using Discrete wavelet...
متن کاملWavelet Domain Approximate Entropy-Based Epileptic Seizure Detection
The electroencephalogram (EEG) signal plays an important role in the detection of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a timeconsuming analysis of the entire length of the EEG data by an expert. The aim of this work is to develop a new method for automatic detection of EEG patterns using ...
متن کاملQualitative Diagnostic Criteria into Objective Quantitative Signal Feature Classification
Predicting the epileptic seizure is challenging biomedical problem. EEG signal includes enormous information. Few relevant parameters are expected in the field of recognition and diagnostic purposes. Seizure detection and classification system has been designed and developed. The system uses computer based procedures to detect seizure and classified normal and abnormal subjects. Intelligent com...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017